(3) I
n
= 1/(n
2
+1
2
) + 2/(n
2
+2
2
) + 3/(n
2
+3
2
) + ... + n/(n
2
+n
2
)
とおくこのとき
∫
1
n+1
x/(n
2
+x
2
)dx < I
n
< ∫
0
n
x/(n
2
+x
2
)dx
であり
∫
1
n+1
x/(n
2
+x
2
)dx = (1/2) (log(n
2
+(n+1)
2
) - log(n
2
+1
2
)
∫
0
n
x/(n
2
+x
2
)dx = (1/2) (log(n
2
+n
2
) - log(n
2
) = (1/2) log2
などより
= (1/2) log2 を得る
戻る
indexに戻る