(3) In = 1/(n2+12) + 2/(n2+22) + 3/(n2+32) + ... + n/(n2+n2)
とおくこのとき
1n+1 x/(n2+x2)dx < In < ∫0nx/(n2+x2)dx
であり
1n+1 x/(n2+x2)dx = (1/2) (log(n2+(n+1)2) - log(n2+12)
0n x/(n2+x2)dx = (1/2) (log(n2+n2) - log(n2) = (1/2) log2
などより = (1/2) log2 を得る
 戻る     
 indexに戻る