∠ABD = 30°、
∠CBD = 18° ∠BCD = 12°、 ∠ACD = 12° のとき ∠CAD は 何度か x = ∠CAD, y = ∠BAD とおくと sin x × sin 30°× sin 12°= sin y × sin 18°× sin 12° x + y = 108°となる。 このような x, y を求めればよい (チェバの定理の系 より) x = 36°、y = 72°に見えるね sin 36° × sin 30°= sin 72°× sin 18° が示されれば良い。 戻る 解答 |