戻る

  問題のリスト

No001-005 
No006-010 
No011-015 
No016-020 
No021-022

解答リストに戻る

No018の略解答
∠ABF = 120°、∠ABP = 30°で
∠PAC = 10°= ∠PFC より
AFCP は同一円周上にある。
よって ∠APF = ∠ACF = 60°である。(増加を押す)

No020の略解答
∠ABD = ∠ACD/2 = 10°である。これより
∠DBF = 130°、∠DBP = 20°である
また ∠DPE = 80°より ∠DPF = 100°である。
(増加を押す)

No019の略解答
∠ABF = 120°、∠ABE = ∠ACE/2 = 40°で
∠AEF = ∠DEF - ∠AEF = 20°である。
 
No021の略解答
∠ABD = 10°なので ∠DBF = 130°で
∠DBE = ∠DCE/2 = 30°で ∠DEF = 30 である。
(増加を押す)

No011の略解答
∠ACF = 60°、∠ACE = 80°で
∠AEF = 20° である。 (増加を押す)

No002の略解答
∠AHF = 30°、∠AHE = 40°で
∠AEF = 20° である。 (増加を押す)

 
No004の略解答
∠DHF = 40°、∠DHE = 30°で
∠AEF = 30° である。 (増加を押す)

No003の略解答
∠ICF = 30°、∠ICE = 110°である
∠IEF = ∠DEF - ∠DEI =10° である。
(増加を押す)