|
@ tan α = tan (∠ABC)/2 = b/(a+c) A r = IE = BE tan α B AG = AB - BG = AB - BE = c - r/tan α C tan β = IG/AG = r/AG D tan (α + β) = (tan α + tan β)/(1 - tan α tan β) E α + β + γ = 90°なので tan γ = 1/tan (α + β) F r = ED tan γ G BD = BE + ED AD = AF+FD = AG + ED CD = BC - BD H 2R = (AB+BD+DA)r, 2S = (AD+DC+CA)s @、Aより BE = r(a+c)/b @、Bより AG = (bc-r(a+c))/b Cより tan β = br/(bc-r(a+c)) Dより tan (α + β) = b2c/((a+c)bc-r((a+c)2+b2)) (a+c)2+b2 = (a+c)2+(a2-c2) = 2a(a+c) なので tan (α + β) = b2c/((a+c)(bc-2ar)) = (a-c)c/(bc-2ar) E、Fより ED = (a-c)cr/(bc-2ar) Hより 2R = (AB+BD+DA)r = (2AB+2ED)r = 2( c + (a-c)cr/(bc-2ar))r 2cr(bc - (a+c)r)/(bc - 2ar) 2S = 2(R+S) - 2R = bc - 2cr(bc - (a+c)r)/(bc - 2ar) = (b2c2 -2(a+b)bcr + 2c(a+c)r2)/(bc - 2ar) = (a+c)c(c(a-c)-2br+2r2)/(bc - 2ar) また AD + DC + CA = AF + FD + DC + CA = AG + ED + DC + CA = AB - BD + BC - BE + CA = (a+b+c) - 2BE = (a+b+c) - 2r(a+c)/b = (b(a+c)+b2-2r(a+c))/b = (a+c)((a+b-c) - 2r)/b なのでHより s = bc(c(a-c)-2br+2r2)/((bc - 2ar)((a+b-c) - 2r)) 戻る 一つ戻る 計算 |