f1(x) = x2/2 + x/2 f2(x) = x3/3 + x2/2 + x/6 f3(x) = x4/4 + x3/2 + x2/4 f4(x) = x5/5 + x4/2 + x3/3 - x/30 f5(x) = x6/6 + x5/2 + 5x4/12 - x2/12 f6(x) = x7/7 + x6/2 + x5/2 - x3/6 + x/42 f7(x) = x8/8 + x7/2 + 7x6/12 - 7x4/24 + x2/12 f8(x) = x9/9 + x8/2 + 2x7/3 - 7x5/15 + 2x3/9 - x/30 |
f1(x) = x(x+1)/2 f2(x) = x(x+1)(2x+1)/6 f3(x) = x2(x+1)2/4 f4(x) = x(x+1)(2x+1)(3x2+3x-1)/30 f5(x) = x2(x+1)2(2x2+2x-1)/12 f6(x) = x(x+1)(2x+1)(3x4+6x3-3x+1)/42 f7(x) = x2(x+1)2 (3x4+6x3-x2-4x+2)/24 f8(x) = x(x+1)(2x+1)(5x6 + 15x5 + 5x4 - 15x3 - x2 + 9x - 3)/90 |